Kiener, D.; Jeong, J.; Alfreider, M.; Konetschnik, R.; Oh, S. H.: Prospects of using small scale testing to examine different deformation mechanisms in nanoscale single crystals - A case study in Mg. Crystals 11 (1), 61 (2021)
Imrich, P. J.; Kirchlechner, C.; Kiener, D.; Dehm, G.: In situ TEM microcompression of single and bicrystalline samples: insights and limitations. JOM-Journal of the Minerals Metals & Materials Society 67 (8), pp. 1704 - 1712 (2015)
Imrich, P. J.; Kirchlechner, C.; Kiener, D.; Dehm, G.: Internal and external stresses: in situ TEM compression of Cu bicrystals containing a twin boundary. Scripta Materialia 100, pp. 94 - 97 (2015)
Oh, S. H.; Legros, M.; Kiener, D.; Dehm, G.: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Materials 8 (2), pp. 95 - 100 (2009)
Kiener, D.; Motz, C.; Dehm, G.; Pippan, R.: Overview on established and novel FIB based miniaturized mechanical testing using in-situ SEM. International Journal of Materials Research 100 (8), pp. 1074 - 1087 (2009)
Kiener, D.; Grosinger, W.; Dehm, G.; Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In situ tenison experiments of miniaturized single-crystal copper samples. Acta Materialia 56 (3), pp. 580 - 592 (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…