Vatti, A. K.; Todorova, M.; Neugebauer, J.: Ab Initio Determined Phase Diagram of Clean and Solvated Muscovite Mica Surfaces. Langmuir 32 (4), pp. 1027 - 1033 (2016)
Ma, D.; Grabowski, B.; Körmann, F.; Neugebauer, J.; Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Materialia 100, pp. 90 - 97 (2015)
Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Development and application of a Ni–Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Physical Review B 92 (13), 134107 (2015)
Friák, M.; Tytko, D.; Holec, D.; Choi, P.-P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J.: Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New Journal of Physics 17 (9), 093004 (2015)
Huang, L.; Grabowski, B.; McEniry, E.; Trinkle, D. R.; Neugebauer, J.: Importance of coordination number and bond length in titanium revealed by electronic structure investigations. Physica Status Solidi B 252 (9), pp. 1907 - 1924 (2015)
Cui, Y.; Lee, S.; Freysoldt, C.; Neugebauer, J.: Role of biaxial strain and microscopic ordering for structural and electronic properties of InxGa1-xN. Physical Review B 92 (8), 085204, pp. 5204 - 5210 (2015)
Ma, D.; Friák, M.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses. Acta Materialia 98, 12303, pp. 367 - 376 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.