Freysoldt, C.; Hickel, T.; Janßen, J.; Wang, N.; Zendegani, A.: High-throughput optimization of finite temperature phase stabilities: Concepts and application. Coffee with Max Planck, virtual seminar organized by the MPIE, Düsseldorf, Germany (2021)
Hickel, T.; Freysoldt, C.; Janßen, J.; Wang, N.; Zendegani, A.: High-throughput optimization of finite temperature phase stabilities: Concepts and application. Coffee with Max Planck, virtual seminar organized by the MPIE, Düsseldorf, Germany (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. AMS Seminar, virtual, Bochum, Germany (2020)
Neugebauer, J.; Lymperakis, L.; Janßen, J.; Huber, L.; Hickel, T.: Modeling crystal growth and materials design in high dimensional chemical and structural configuration spaces. German Conference on Crystal Growth DKT 2020, München/Garching, Germany (2020)
Hickel, T.: Application of Density Functional Theory in the Context of Phase Diagram Modelling. MSIT Winter School on Materials Chemistry, Virtual Event, Castle Ringberg, Tegernsee (2020)
Hickel, T.; McEniry, E.; Nazarov, R.; Dey, P.: Ab initio basierte Simulation zur Wasserstoffversprödung in hoch-Mn Stählen. Seminar der Staatlichen Materialprüfungsanstalt Darmstadt, Institut für Werkstoffkunde, Darmstadt, Germany (2020)
Hickel, T.; Aydin, U.; Sözen, H. I.; Dutta, B.; Pei, Z.; Neugebauer, J.: Innovative concepts in materials design to boost renewable energies. Seminar of Institute for Innovative Technologies, SRH Berlin University of Applied Sciences, Berlin, Germany (2020)
Janßen, J.; Hickel, T.; Neugebauer, J.: Automated ab-initio Determination of Materials Properties at finite Temperatures with pyiron. CNLS Seminar, Los Alamos, NM, USA (2019)
Neugebauer, J.; Huber, L.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio input for multiphysics models: Accuracy, performance and challenges. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Erlangen, Germany (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.