Ankah, G. N.; Meimandi, S.; Renner, F. U.: Dealloying of Cu3Pd Single Crystal Surfaces. Journal of the Electrochemical Society 160 (8), pp. C390 - C395 (2013)
Valtiner, M.; Ankah, G. N.; Bashir, A.; Renner, F. U.: Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design. Review of Scientific Instruments 82 (2), pp. 023703-1 - 023703-8 (2011)
Renner, F. U.; Ankah, G.; Pareek, A.: Surface Morphology Changes during Dealloying. Pacific Rim Meetin on Electrochemical and Solid-State Science PRIME 2012 / ECS 222, Honolulu, HI, USA (2012)
Ankah, G. N.; Renner, F. U.; Rohwerder, M.: Fundamental Investigations of the Corrosion of Binary Alloys. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Ankah, G. N.: Investigations of the Selective Dissolution of Cu3Au(111): In-situ and Ex-situ Characterization. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…