Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided design of Ti-binaries for human implants. XVI. International Materials Research Congress, Cancun (Merrida), Mexico (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Ab initio prediction of elastic and thermodynamic properties of metals. Seminar in Friedrich-Alexander-Universitaet, Erlangen-Nürnberg, Germany (2007)
Friak, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Theory-guided design of Ti–Nb alloys for biomedical applications. 1st International Conference on Material Modelling, Dortmund, Germany (2009)
Friák, M.; Ma, D.; Sander, B.; Raabe, D.; Neugebauer, J.: Bottom up design of novel titanium-based biomaterials through the combination of ab-initio simulations and experimental methods. Euromat 2007, Nürnberg, Germany (2007)
Ma, D.; Raabe, D.; Roters, F.: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. International workshop on small scale plasticity, Brauwald, Switzerland (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Deviations from the ideal, stoichiometric composition of tcp (tetrahedrally close-packed) intermetallic phases as, e.g., Laves phases can be partially compensated by point defects like antisite atoms or vacancies, but also planar defects may offer an opportunity to accommodate excess atoms.