Philippi, B.; Schießl, A.; Schingale, A.; Dehm, G.: Micromechanical investigation of solder joints for automotive microelectronics. Nano- and Micromechanical Testing in Materials Research and Development IV, Olhão Algarve, Portugal (2013)
Harzer, T. P.; Dehm, G.: Microstructural studies of Cu–Cr thin film structures grown by molecular beam epitaxy using advanced transmission electron microscopy. Macan Theromodynamics Workshop, Istanbul, Turkey (2012)
Marx, V. M.; Kirchlechner, C.; Zizak, I.; Dehm, G.; Cordill, M. J.: In-situ fracture study of thin Cu films on polyimide substrate. GDRi MECANO General Meeting 2012, Ecole de Mines, Paris, France (2012)
Eiper, E.; Martinschitz, K. J.; Dehm, G.; Kečkéš, J.: Size effect in metallic thin films characterized by low-temperature X-ray diffraction. Gordon Research Conference on thin film & smallscale mechanical behavior , Colby College Waterville, Maine, USA (2006)
Rester, M.; Kiener, D.; Kreuzer, H. G.M.; Dehm, G.; Motz, C.: Microstructural investigation of the deformation zone below nanoindents in copper, silver and nickel. Hysitron Workshop and Usermeeting, München, Germany (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…