Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Chen, P.; Chew, L. M.; Kostka, A.; Muhler, M.; Xia, W.: The structural and electronic promoting effect of nitrogen-doped carbon nanotubes on supported Pd nanoparticles for selective olefin hydrogenation. Catalysis Science & Technology 3 (8), pp. 1964 - 1971 (2013)
Erbe, A.; Valtiner, M.; Muhler, M.; Mayrhofer, K. J. J.; Rohwerder, M.: Physical chemistry of surfaces and interfaces. Lecture: Course for PhD students of the IMPRS Surmat, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - October 31, 2013
Iqbal, D.: Ultrathin Chemisorbed Polymer Coatings: Corrosion Protection and Nanostructuring of ZnO. Dissertation, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany (2014)
Meier, J. C.: Degradation phenomena and design principles for stable and active Pt/C fuel cell catalysts. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.