Segregation effects of interstitial and substitutional elements at grain boundaries in ferritic iron and their effect on liquid metal embrittlement

Publications of Marvin Poul

Journal Article (5)

1.
Journal Article
Poul, M.; Huber, L.; Neugebauer, J.: Automated generation of structure datasets for machine learning potentials and alloys. npj Computational Materials 11 (1), 174 (2025)
2.
Journal Article
Menon, S.; Lysogorskiy, Y.; Knoll, A. L. M.; Leimeroth, N.; Poul, M.; Qamar, M.; Janssen, J.; Mrovec, M.; Rohrer, J.; Albe, K. et al.; Behler, J.; Drautz, R.; Neugebauer, J.: From electrons to phase diagrams with machine learning potentials using pyiron based automated workflows. npj Computational Materials 10 (1), 261 (2024)
3.
Journal Article
Dsouza, R.; Poul, M.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free computation of finite temperature material properties in isochoric and isobaric ensembles using the mean-field anharmonic bond model. Physical Review B 109, 064108 (2024)
4.
Journal Article
Yilmaz, C.; Poul, M.; Lahn, L.; Raabe, D.; Zaefferer, S.: Dislocation-assisted particle dissolution: A new hypothesis for abnormal growth of Goss grains in grain-oriented electrical steels. Acta Materialia 258, 119170 (2023)
5.
Journal Article
Poul, M.; Huber, L.; Bitzek, E.; Neugebauer, J.: Systematic atomic structure datasets for machine learning potentials: Application to defects in magnesium. Physical Review B 107, 104103 (2023)

Talk (2)

6.
Talk
Neugebauer, J.; Poul, M.; Mathews, P.; Tehranchi, A.; Yang, J.; Todorova, M.; Hickel, T.: Construction and application of defect phase diagrams: Concepts and computational approaches. Thermec 2023, Vienna, Austria (2023)
7.
Talk
Neugebauer, J.; Poul, M.; Mathews, P.; Tehranchi, A.; Yang, J.; Todorova, M.; Hickel, T.: Defect phase diagrams: Concepts, computational approaches and applications. DPG-Frühjahrstagung (DPG Spring Meeting), Dresden, Germany (2023)

Preprint (1)

8.
Preprint
Poul, M.; Huber, L.; Bitzek, E.; Neugebauer, J.: Systematic Structure Datasets for Machine Learning Potentials: Application to Moment Tensor Potentials of Magnesium and its Defects. arXiv (2022)

Other Interesting Articles

Go to Editor View