Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. In: Revue de Métallurgie, SF2M - JA96, p. 198. SF2M - JA96, Paris, France, October 15, 1996 - October 17, 1996. (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimental Investigation of High Temperature Equilibria in the Ti–Al System. In: Proceedings CALPHAD XXII, p. 90. CALPHAD XXII, Salou, Spain, May 16, 1993 - May 22, 1993. (1993)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimentelle Untersuchungen der Hochtemperaturgleichgewichte im System Ti–Al. DGM Hauptversammlung 1993, Friedrichshafen, Germany (1993)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…