Tasan, C. C.; Diehl, M.; Yan, D.; Raabe, D.: Coupled high-resolution experiments and crystal plasticity simulations to analyze stress and strain partitioning in multi-phase alloys. TMS2015, Orlando, FL, USA (2015)
Diehl, M.; Shanthraj, P.; Roters, F.; Tasan, C. C.; Raabe, D.: A Virtual Laboratory to Derive Mechanical Properties. M2i Conference "High Tech Materials: your world - our business"
, Sint Michielgestel, The Netherlands (2014)
Roters, F.; Diehl, M.; Shanthraj, P.; Zambaldi, C.; Tasan, C. C.; Yan, D.; Raabe, D.: Simulation analysis of stress and strain partitioning in dual phase steel based on real microstructures. MMM2014, 7th International Conference on Multiscale
Materials Modeling
, Berkeley, CA, USA (2014)
Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. IUTAM Symposium on Connecting Multiscale Mechanics to Complex Material Design, Evanston, IL, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…