Du, Y. J. A.; Ismer, L.; Rogal, J.; Hickel, T.; Neugebauer, J.; Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in alpha- and gamma-Fe. Physical Review B 84 (14), pp. 144121-1 - 144121-13 (2011)
Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic and electronic excitations. Physical Review B 84 (12), 125101 (2011)
Ismer, L.; Ireta, J.; Neugebauer, J.: A density functional theory based estimation of the anharmonic contributions to the free energy of a polypeptide helix. Journal of Chemical Physics 135 (8), pp. 084122-1 - 084122-7 (2011)
Marquardt, O.; Hickel, T.; Neugebauer, J.; Gambaryan, K. M.; Aroutiounian, V. M.: Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures. Journal of Applied Physics 110 (4), pp. 043708-1 - 043708-6 (2011)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Formation energies of point defects at finite temperatures. Physica Status Solidi B 248 (6), pp. 1295 - 1308 (2011)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio study of electron paramagnetic resonance hyperfine structure of the silicon dangling bond: Role of the local environment. Physical Review B 83 (14), 144110, pp. 1 - 8 (2011)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Role of spin quantization in determining the thermodynamic properties of magnetic transition metals. Physical Review B 83 (16), 165114 (2011)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Hydrogen-enhanced plasticity at dilute bulk H concentrations: The role of H-H interactions and the formation of local hydrides. Acta Materialia 59, pp. 2969 - 2980 (2011)
Abbasi, A.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Materialia 59, pp. 3041 - 3048 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.