Kawakita, J.; Stratmann, M.; Hassel, A. W.: High Voltage Pulse Anodization of a NiTi Shape Memory Alloy. Journal of the Electrochemical Society 154 (6), pp. C294 - C298 (2007)
Wapner, K.; Stratmann, M.; Grundmeier, G.: In-situ Infrared Spectroscopic and Scanning Kelvin Probe Measurements of Water and Ion Transport Kinetics at Polymer/Metal Interfaces. Electrochimica Acta 51 (16), pp. 3303 - 3315 (2006)
Akiyama, E.; Stratmann, M.; Hassel, A. W.: Discrete electrochemical transients of aluminium alloys generated by slurry jet impingement. J. Phys. D: Appl. Phys. 39, pp. 3157 - 3164 (2006)
Fushimi, K.; Stratmann, M.; Hassel, A. W.: Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochim. Acta 52, pp. 1290 - 1295 (2006)
Grundmeier, G.; Rossenbeck, B.; Roschmann, K. J.; Ebbinghaus, P.; Stratmann, M.: Corrosion Protection of Zn-Phosphate Containing Water Borne Dispersion Coatings on Steel. Part 2: Corrosive de-adhesion of model films on iron substrates. Corrosion Science 48 (11), pp. 3716 - 3730 (2006)
Rossenbeck, B.; Ebbinghaus, P.; Stratmann, M.; Grundmeier, G.: Corrosion protection of Zn-phosphate containing water borne dispersion coatings on steel. Part 1: Design and Analysis of Model Water Based Latex Films on Iron Substrates. Corrosion Science 48, pp. 3703 - 3715 (2006)
Smith, A.J.; Stratmann, M.; Hassel, A. W.: Investigation of the effect of impingement angle on tribocorrosion using single impacts. Electrochim. Acta 51, pp. 6521 - 6526 (2006)
Grundmeier, G.; Stratmann, M.: Adhesion and De-adhesion mechanisms at polymer/metal interfaces: Mechanistic understanding based on in situ studies of buried interfaces. Annual Review of Materials Research 35, pp. 571 - 615 (2005)
Stratmann, M.: Corrosion Stability of Polymer-Coated Metals - New Concepts Based on Fundamental Understanding. Corrosion 61 (12), pp. 1115 - 1126 (2005)
Stratmann, M.: Hans-Jürgen Engell - Preface. Zeitschrift fur Physikalische Chemie - International Journal of Research in Physical Chemistry & Chemical Physics 219 (11), pp. 1445 - 1446 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.