Li, Y.; Herbig, M.; Goto, S.; Raabe, D.: Atomic scale characterization of white etching area and its adjacent matrix in a martensitic 100Cr6 bearing steel. Materials Characterization 123, pp. 349 - 353 (2017)
Lübke, A.; Loza, K.; Patnaik, R.; Enax, J.; Raabe, D.; Prymak, O.; Fabritius, H.-O.; Gaengler, P.; Epple, M.: Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Advances 7 (11), pp. 6215 - 6222 (2017)
Baron, C.; Springer, H.; Raabe, D.: Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels. Materials and Design 112, pp. 131 - 139 (2016)
Baron, C.; Springer, H.; Raabe, D.: Effects of Mn additions on microstructure and properties of Fe–TiB2 based high modulus steels. Materials and Design 111, pp. 185 - 191 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.