Malyar, N.; Dehm, G.; Kirchlechner, C.: Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper. Scripta Materialia 138, pp. 88 - 91 (2017)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Materialia 129, pp. 91 - 97 (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Towards probing the barrier strength of grain boundaries for dislocation transmission. Electronic Materials and Applications 2017, Orlando, FL, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Do we understand dislocation transmission through grain boundaries? PICS meeting, Luminy, Marseille, France (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.