Sarfraz, A.; Posner, R.; Lange, M. M.; Lill, K. A.; Erbe, A.: Role of intermetallics and copper in the deposition of ZrO2-based conversion coatings on AA6014. Journal of the Electrochemical Society 161 (12), pp. C509 - C516 (2014)
Schneider, P.; Sigel, R.; Lange, M. M.; Beier, F.; Renner, F. U.; Erbe, A.: Activation and fluoride-assisted phosphating of aluminium silicon coated steel. ACS Applied Materials and Interfaces 5 (10), pp. 4224 - 4232 (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Lange, M. M.: The microstructural impact on high temperature corrosion in DMV 617 mod under coal-fired conditions. Dissertation, RWTH Aachen, Aachen, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.