Hariharan, A.; Lu, L.; Risse, J.; Jägle, E. A.; Raabe, D.: Mechanisms Contributing to Solidification Cracking during laser powder bed fusion of Inconel-738LC. Alloys for Additive Manufacturing Symposium 2019 (AAMS2019), Chalmers University of Technology, Gothenburg, Sweden (2019)
Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D.: On the determination of constitutive parameters for a physics-based crystal plasticity model from macro-scale behavior. Meeting Materials 2018 , M2i Conference, Noordwijkerhout, The Netherlands (2018)
Jun, H.; Choi, P.-P.; Li, Z.; Raabe, D.: Design of dual-phase refractory multi-principle element alloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
Kühbach, M.; Breen, A. J.; Herbig, M.; Gault, B.; Raabe, D.: Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Pillar Orientations Using TAPSim. APT&M 2018 International Conference on Atom-Probe Tomography & Microscopy, Washington, DC, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…