Sun, G.; Grundmeier, G.: Surface-enhanced Raman spectroscopy of the growth of ultra-thin organosilicon plasma polymers on nanoporous Ag/SiO2-bilayer films. Thin Solid Films 515 (4), pp. 1266 - 1274 (2006)
Sun, G.: Characterization and Application of New SERS Active Substrates Prepared by Combined Plasma Polymerization and Physical Vapour Deposition. 11th ECASIA, Vienna, Austria (2005)
Sun, G.: Surface-enhanced Raman Spectroscopy Investigation of Surfaces and Interfaces in Thin Films on Metals. Dissertation, Ruhr-Universität, Fakultät für Maschinenbau, Institut für Werkstoffe, Bochum, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…