Ponge, D.; Tarzimoghadam, Z.; Klöwer, J.; Raabe, D.: Hydrogen-assisted Failure in Ni-base Superalloy 718 Studied under In-situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation. TMS 2017 Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Springer, H.; Raabe, D.; Belde, M. M.: Rapid Alloy Prototyping – High Throughput Bulk Metallurgy at the MPIE. Workshop on machine learning and data analytics in advanced metals processing, RollsRoyce Institute Manchester, Manchester, UK (2017)
Diehl, M.; Cereceda, D.; Wong, S. L.; Reuber, J. C.; Roters, F.; Raabe, D.: From Phenomenological Descriptions to Physics-based Constitutive Models EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials. EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials
, Aberdeen, Scotland (2016)
Ponge, D.; Kuzmina, M.; Herbig, M.; Sandlöbes, S.; Raabe, D.: Segregation and Austenite Reversion at Dislocations in a Binary Fe–9%Mn Steel Studied by Correlative TEM-atom Probe Tomography. The 3rd International Conference on High Manganese Steels, Chengdu, China (2016)
Marian, J.; Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.: Unraveling the temperature dependence of the yield strength of tungsten single crystals using atomistically-informed crystal plasticity. 8th International Conference on Multiscale Materials Modeling, MMM2016, Dijon, France (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Marian, J.: Unraveling the temperature dependence of the yield strength in BCC metals from atomistically-informed crystal plasticity calculation. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…