Kumar, A.; Dutta, A.; Makineni, S. K.; Herbig, M.; Petrov, R.; Sietsma, J.: In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 757, pp. 107 - 116 (2019)
Dutta, A.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia 5, 100252 (2019)
Dutta, A.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Understanding hot vs. Cold rolled medium manganese steel deformation behavior using in situ microscopic digital image correlation. Materials Science Forum 941, pp. 198 - 205 (2018)
Haupt, M.; Dutta, A.; Ponge, D.; Sandlöbes, S.; Nellessen, M.; Hirt, G.: Influence of Intercritical Annealing on Microstructure and Mechanical Properties of a Medium Manganese Steel. International Conference on the Technology of Plasticity, ICTP 2017, Cambridge, UK, September 17, 2017 - September 22, 2017. Procedia Engineering 207, pp. 1803 - 1808 (2017)
Dutta, A.: Deformation behaviour and texture memory effect of multiphase nano-laminate medium manganese steels. Dissertation, RWTH Aachen University (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.