Herbig, M.; Ponge, D.; Gault, B.; Borchers, C.; Raabe, D.: Segregation and phase transformation at dislocations during aging in a Fe-9%Mn steel studied by correlative TEM-atom probe tomography. MSE 2014, Darmstadt, Germany (2014)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Conference (GRC) 2024, Corrosion Challenges and Opportunities for the Energy Transition, New London, CT, USA (2024)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Seminar (GRS) 2024, Corrosion Monitoring, Modelling and Mitigation Towards a Sustainable Future, New London, CT, USA (2024)
Krämer, M.; Favelukis, B.; Sokol, M.; Rosen, B. A.; Eliaz, N.; Kim, S.-H.; Gault, B.: Facilitating Atom Probe Tomography of Free-Standing 2D MXene Films. Atom Probe Tomography & Microscopy (APT&M) 2023, Leuven, Belgium (2023)
Schwarz, T.; Woods, E.; Aota, L. S.; Zhou, X.; McCaroll, I.; Gault, B.: Application of cryo-atom probe tomography to study early-stage corrosion mechanism at liquid-solid interfaces at near atomic scale. EuroCorr 2023, Bruessles, Belgium (2023)
Bueno Villoro, R.; Luo, T.; Bishara, H.; Abdellaoui, L.; Gault, B.; Wood, M.; Snyder, G. J.; Scheu, C.; Zhang, S.: Effect of grain boundaries on electrical conductivity in Ti(Co,Fe)Sb half Heusler thermoelectrics. 719. WE-Heraeus-Seminar, Understanding Transport Processes on the Nanoscale for Energy Harvesting Devices, online (2021)
Kühbach, M.; Breen, A. J.; Herbig, M.; Gault, B.; Raabe, D.: Building a Library of Simulated Atom Probe Data for Different Crystal Structures and Pillar Orientations Using TAPSim. APT&M 2018 International Conference on Atom-Probe Tomography & Microscopy, Washington, DC, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.