Jentner, R.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Local strength of bainitic and ferritic HSLA steel constituents understood using correlative electron microscopy and microcompression testing. Materials and Design 236, 112507 (2023)
Jentner, R.; Tsai, S.-P.; Welle, A.; Scholl, S.; Srivastava, K.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Automated classification of granular bainite and polygonal ferrite by electron backscatter diffraction verified through local structural and mechanical analyses. Journal of Materials Research 38 (18), pp. 4177 - 4191 (2023)
Jentner, R.; Best, J. P.; Kirchlechner, C.; Dehm, G.: Challenges in the phase identification of steels using unsupervised clustering of nanoindentation data. Nanomechanical Testing in Materials Research and Development VIII, Split, Croatia (2022)
Jentner, R.: Phase identification and micromechanical characterization of an advanced high-strength low-alloy steel. Dissertation, Ruhr-Universität Bochum (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.