Kim, Y.-J.; Kim, H.; Kang, M.; Rhee, K.; Shin, S. Y.; Lee, S.: Correlation of microstructure, chip-forming properties, and dynamic torsional properties in free-machining steels. Metallurgical and Materials Transactions A 44 (10), pp. 4613 - 4625 (2013)
Shin, S. Y.: Effects of microstructure on tensile, charpy impact, and crack tip opening displacement properties of two API X80 pipeline steels. Metallurgical and Materials Transactions A 44 (6), pp. 2613 - 2624 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Effects of microstructure and pre-strain on Bauschinger effect in API X70 and X80 linepipe steels. Metals and Materials International 19 (3), pp. 423 - 431 (2013)
Sohn, S. S.; Han, S. Y.; Shin, S. Y.; Bae, J.; Lee, S.: Analysis and estimation of the yield strength of API X70 and X80 linepipe steels by double-cycle simulation tests. Metals and Materials International 19 (3), pp. 377 - 388 (2013)
Kim, H.; Kang, M.; Shin, S. Y.; Lee, S.: Alligatoring phenomenon occurring during hot rolling of free-machining steel wire rods. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 568, pp. 8 - 19 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.