Aguirre, J.; Walczak, M.; Rohwerder, M.: The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: Effect of nominal flow velocity and oxygen content. WEAR 438-439, 203053 (2019)
Urriola, P. V.; Walczak, M.; Rohwerder, M.: Theoretical Efficiency of Metallic Dispersion Coatings for Corrosion Protection at the Cut-Edge. Journal of the Electrochemical Society 160 (8), pp. C305 - C315 (2013)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of Guest Molecules from Modified Mesoporous Silica. 5th International Mesostructured Materials Symposium, IMMS2006, Shanghai, China, August 05, 2006 - August 07, 2006. (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of guest molecules from modified mesoporous silica. 5th International Mesostructured Materials Symposium, Shanghai, China (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of dye molecules from mesostructured microparticles. 104th Bunsentagung, Frankfurt a. M., Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.