Choi, W. S.; De Cooman, B. C.: Effect of Carbon on the Damping Capacity and Mechanical Properties of Thermally Trained Fe–Mn Based High Damping Alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 700, pp. 641 - 648 (2017)
Lee, C. W.; Choi, W. S.; Cho, Y. R.; De Cooman, B. C.: Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel. Metallurgical and Materials Transactions A 47 (6), pp. 2875 - 2884 (2016)
Lee, C. W.; Choi, W. S.; Cho, Y. R.; De Cooman, B. C.: Microstructure evolution of a 55 wt.% Al–Zn coating on press hardening steel during rapid heating. Surface and Coatings Technology 281, pp. 35 - 43 (2015)
Choi, W. S.; De Cooman, B. C.; Sandlöbes, S.; Raabe, D.: Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Materialia 98, 12304, pp. 391 - 404 (2015)
Choi, W. S.: Deformation mechanisms and the role of interfaces in face-centered cubic Fe-Mn-C micro-pillars. Dissertation, RWTH Aachen, Aachen, Germany (2018)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.