Park, E.; Spiegel, M.: Effects of heat treatment on near surface elemental profiles of Fe–15Cr polycrystalline alloy. Corrosion Engineering, Science and Technology 40 (3), pp. 217 - 225 (2005)
Park, E.; Hüning, B.; Spiegel, M.: Annealing of Fe–15Cr alloy in N2–5%H2 gas mixture: Effect of hydrogen concentration. Defect and Diffusion Forum 237-240, p. 928 - 928 (2005)
Park, E.; Hüning, B.; Spiegel, M.: Evolution of near-surface concentration profiles of Cr during annealing of Fe–15Cr polycrystalline alloy. Applied Surface Science 249 (1-4), pp. 127 - 138 (2005)
Park, E.; Spiegel, M.: Development and Composition of the High Temperature Oxide Film Grown on Fe-15Cr during Annealing. Passivity 9, Paris, France, June 27, 2005 - July 01, 2005., (2005)
Park, E.; Hüning, B.; Spiegel, M.: Effects of heat treatment on the oxide layer of Fe–15 at.% Cr alloy surface. Proceedings of EUROCORR 04, Nice, France, 2004. Long Term Prediction and Modelling of Corrosion 1, (2004)
Park, E.; Spiegel, M.: Development and Composition of the High Temperature Oxide Film Grown on Fe-15Cr during Annealing. Passivity 9, Paris, France (2005)
Park, E.; Spiegel, M.: Oxidation resistance of alloys for flexible tubes in dry air and KCl containing atmospheres. Eurocorr 2005, Lisbon, Portugal (2005)
Park, E.; Hüning, B.; Borodin, S.; Rohwerder, M.; Spiegel, M.: Initial oxidation of Fe-Cr alloys: In situ STM amd ex-situ SEM studies. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…