Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Iron Substrates Borided with Ni2B Particles by Laser-Induced Surface-Alloying. Zeitschrift für Metallkunde 90 (11), pp. 920 - 929 (1999)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Rashkova, B.; Cohen, S. S.; Goren-Muginstein, G.; Bamberger, M. S.; Dehm, G.: Analytical and high resolution TEM analysis of precipitation hardening in Mg–Zn–Sn alloys. In: Proceedings of the 7th Multinational Congress on Microscopy 2005, pp. 183 - 184 (Eds. Ceh, M.; Drazic, G.; Fidler, S.). 7th Multinational Congress on Microscopy 2005, Portorož, Slovenia, June 26, 2005 - June 30, 2005. (2005)
Cohen, S. S.; Goren-Muginstein, G. R.; Avraham, S.; Dehm, G.; Bamberger, M. S.: Phase formation, precipitation and strengthening mechanisims in Mg–Zn–Sn and Mg–Zn–Sn–Ca alloys. In: Symposium on Magnesium Technology 2004, pp. 301 - 305. TMS Annual Meeting, Charlotte, NC, USA, March 14, 2004 - March 18, 2004. (2004)
Dehm, G.; Bamberger, M. S.: Microstructure and Properties of Ferrous Substrates Laser-Alloyed with Boride Particles. In: Proc. of the European Conference on Laser Treatment of Materials, pp. 221 - 226 (Ed. Mordike, B. L.). ECLAT 98, Hannover, Germany, September 22, 1998 - September 23, 1998. Werkstoff-Informationsgesellschaft mbH, Frankfurt, Germany (1998)
Medres, B.; Shepeleva, L.; Ryk, G.; Dehm, G.; Bamberger, M. S.; Kaplan, W. D.: The Pecularities of Steels Laser Treatment with CrB2 and Ni2B Powders. In: ICALEO '98: laser materials processing conference: proceedings, Vol. 2, pp. D51 - D57. International Congress on Applications of Lasers and Electro-Optics’98, Orlando, FL, USA. (1998)
Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe. In: Laser Materials Processing, Vol. 83a, pp. 128 - 137. International Congress on Applications of Lasers and Electro-Optics’97, San Diego, CA, USA, 1997. (1997)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.