Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Materials Science and Engineering A 527, pp. 3552 - 3560 (2010)
Sandim, M. J. R.; Sandim, H. R. Z.; Zaefferer, S.; Raabe, D.; Awaji, S.; Watanabe, K.: Electron backscatter diffraction study of Nb3Sn superconducting multifilamentary wire. Scripta Materialia 62 (2), pp. 59 - 62 (2010)
Demir, E.; Raabe, D.; Zaafarani, N.; Zaefferer, S.: Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Materialia 57, pp. 559 - 569 (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Materialia 61, pp. 737 - 740 (2009)
Imlau, J.; Bleck, W.; Zaefferer, S.: Comparison of damage development in dependence of the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel. Int. J. Materials Research 100, pp. 584 - 593 (2009)
Sato, H.; Zaefferer, S.: A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia 57 (6), pp. 1931 - 1937 (2009)
Sato, H.; Zaefferer, S.; Watanabe, Y.: In-situ Observation of Butterfly-type Martensite in Fe-30mass%Ni Alloy during Tensile Test Using High-resolution EBSD. ISIJ International 49, pp. 1784 - 1791 (2009)
Schestakow, I.; Yi, S.; Zaefferer, S.: Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium. Materials Science & Engineering A 516, pp. 58 - 64 (2009)
Wu, G.; Zaefferer, S.: Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching. Ultramicroscopy 109, pp. 1317 - 1325 (2009)
Zambaldi, C.; Zaefferer, S.; Wright, S. I.: Characterization of order domains in γ-TiAl by orientation microscopy based on electron backscatter diffraction. Journal of Applied Crystallography 42, pp. 1092 - 1101 (2009)
Bastos, A.; Zaefferer, S.; Raabe, D.: Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co–Ni films. Journal of Microscopy 230, pp. 487 - 498 (2008)
Frommert, M.; Zobrist, C.; Lahn, L.; Böttcher, A.; Raabe, D.; Zaefferer, S.: Texture measurement of grain-oriented electrical steels after secondary recrystallization. Journal of Magnetism and Magnetic Materials 320, pp. e657 - e660 (2008)
Liu, T.; Raabe, D.; Zaefferer, S.: A 3D tomographic EBSD analysis of a CVD diamond thin film. Science and Technology of Advanced Materials 9, 035013 (2008)
Schmücker, M.; Mechnich, P.; Zaefferer, S.; Schneider, H.: Water vapor corrosion of mullite: Single crystals versus polycrystalline ceramics. Journal of the European Ceramic Society 28, pp. 425 - 429 (2008)
Zaefferer, S.; Romano, P.; Friedel, F.: EBSD as a tool to identify and quantify bainite and ferrite in low alloyed Al-TRIP steels. Journal of Microscopy 230, pp. 499 - 508 (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…