Toparli, C.: Passivity and passivity breakdown on copper: In situ and operando observation of surface oxides. Dissertation, Ruhr-Universität Bochum, Fakultät Maschinenbau, Bochum, Germany (2017)
Polymeros, G.: Performance of catalysts in electrode structure – bridging the gap between fundamental catalyst properties and behavior in real applications. Dissertation, Ruhr-Universität Bochum, Fakultät für Maschinenbau, Bochum, Germany (2017)
Frenznick, S.: In-situ Untersuchungen zu Benetzungsverhalten und Grenzflächenreaktionen beim Feuerverzinken legierter Stähle. Dissertation, Ruhr-Universität-Bochum, Fakultät für Maschinenbau, Bochum, Germany (2009)
Walczak (vorm. Stempniewicz), M.: Release Studies on Mesoporous Microcapsules for New Corrosion Protection Systems. Dissertation, Ruhr-Universität, Fakultät für Maschinenbau, Institut für Werkstoffe, Bochum, Germany (2007)
Rohwerder, M.: Wasserstoff in Metallen: neue Messverfahren zum Nachweis mit hoher räumlicher Auflösung. Habilitation, Ruhr-Universität Bochum, Bochum, Germany (2016)
Rohwerder, M.; Vogerl, A.; Jarosik, A.; Muhr, A.; Norden, M.; Bordignon, M.; Vanden Eynde, X.: Novel Annealing Procedures for Improving Hot Dip Galvanizing of High Strength Steels. (2010)
Rohwerder, M.; Allély, K. O.; Bendick, M.; Altgassen, C.; Conejero, O.; Tomandl, A.; Fernandes, J. S.; Simoes, A.; Chassagne, J.: Self-Healing at Cut-Edge of Coil Coated Galvanized Steel. (2009)
Hübel, K.; Rohwerder, M.; Scheu, C.; Todorova, M.: Organizer of the workshop “Status and Future Challenges in Characterisation of Interfaces for Electrochemical Applications - Part 1” at the MPIE. (2016)
Rohwerder, M.: Symposium X1 - Electron Transfer Reactions at Organic/Metal Interfaces: From Molecular Monolayer Modified Electrodes to Buried Polymer Metal Interfaces. (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
It is very challenging to simulate within DFT extreme electric fields (a few 1010 V/m) at a surface, e.g. for studying field evaporation, the key mechanism in atom probe tomography (APT). We have developed a straight-forward scheme to incorporate an ideal plate counter-electrode in a nominally charged repeated-slab calculation by means of a generalized dipole correction of the standard electrostatic potential obtained from fully periodic FFT.
Magnetic materials enable the electrification of transport, communication, energy, and manufacturing. They serve for instance as hard magnets in electrical motors or as soft magnets in transformers. Their remanence, coercivity, and hysteresis losses determine the efficiency of devices that are urgently needed for enabling society and economy to use…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.