Calcagnotto, M.; Adachi, Y.; Ponge, D.; Raabe, D.: Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Materialia 59 (2), pp. 658 - 670 (2011)
Dmitrieva, O.; Ponge, D.; Inden, G.; Millán, J.; Choi, P.; Sietsma, J.; Raabe, D.: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Materialia 59 (1), pp. 364 - 374 (2011)
Herrera, C.; Ponge, D.; Raabe, D.: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Materialia 59, pp. 4653 - 4664 (2011)
Millán, J.; Ponge, D.; Raabe, D.; Choi, P.; Dmitrieva, O.: Characterization of Nano-Sized Precipitates in a Mn-Based Lean Maraging Steel by Atom Probe Tomography. Steel Research Int. 82, pp. 137 - 145 (2011)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Materials Science and Engineering A 527, pp. 2738 - 2746 (2010)
Calcagnotto, M.; Ponge, D.; Raabe, D.: Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels. Materials Science and Engineering A 527 (29-30), pp. 7832 - 7840 (2010)
Herrera, C.; Ponge, D.; Raabe, D.: Characterization of the microstrcture, crystallographic texture and segregation of an as-cast duplex stainless steel slab. Steel Research International 79 (6), pp. 482 - 488 (2008)
Barani, A.; Li, F.; Romano, P.; Ponge, D.; Raabe, D.: Design of high-strength steels by microalloying and thermomechanical treatment. Special Issue Materials Science and Engineering A 463, pp. 138 - 146 (2007)
Takahashi, T.; Ponge, D.; Raabe, D.: Investigation of orientation gradients in pearlite in hypoeutectoid steel by use of orientation imaging microscopy. Steel Research International 78 (1), pp. 38 - 44 (2007)
Li, F.; Ardehali Barani, A.; Ponge, D.; Raabe, D.: Austenite Grain Coarsening Behavior in a Medium Carbon Si–Cr spring steel with and without Vanadium. Steel Research International 77 (8), pp. 590 - 594 (2006)
Ardehali Barani, A.; Ponge, D.; Raabe, D.: Refinement of grain boundary carbides in a Si–Cr spring steel by thermomechanical treatment. Materials Science and Engineering: A 426 (1-2), pp. 194 - 201 (2006)
Ardehali Barani, A.; Ponge, D.: Optimierung der Grenzwerte von Begleitelementen durch innovative Behandlung SiCr-legierter hochfester Stähle für Schraubenfedern. Stahl und Eisen 126, 1, pp. 63 - 67 (2006)
Ardehali Barani, A.; Ponge, D.; Raabe, D.: Strong and Ductile Martensitic Steels for Automotive Applications. Steel Research International 77, 9-10, pp. 704 - 711 (2006)
Song, R.; Ponge, D.; Raabe, D.; Speer, J. G.; Matlock, D. K.: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Materials Science and Engineering A 441, pp. 1 - 17 (2006)
Song, R.; Ponge, D.; Raabe, D.: Influence of Mn Content on the Microstructure and Mechanical Properties of Ultrafine Grained C–Mn Steels. ISIJ International 45/11, pp. 1721 - 1726 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…