Feng, S.; Gong, Y.; Neugebauer, J.; Raabe, D.; Liotti, E.; Grant, P. S.: Multi-technique investigation of Fe-rich intermetallic compounds for more impurity-tolerant Al alloys. Annual Meeting of DPG and DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) 2024, Berlin, Germany (2024)
Raabe, D.: Basic Materials Science Aspects of Green Metal Production. Royal Society Conference on Sustainable Metals: Science and Systems, London, UK (2024)
Raabe, D.: The Interplay of Lattice Defects and Chemistry at Atomic Scale and Why it Matters for the Properties of Materials. Van Horn Distinguished Lecturer Series, Cleveland, OH, USA (2023)
Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: Tackling hydrogen embrittlement sensitivity and poor low-temperature toughness of austenitic high manganese lightweight steel. Thermec 2023 - International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS, Vienna, Austria (2023)
Elkot, M.; Sun, B.; Ponge, D.; Raabe, D.: The deceit of steel strength ductility diagrams: A case study on high manganese lightweight steel. 7th International Conference of Engineering Against Failure ICEAF 2023, Spetses, Greece (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.