Zambaldi, C.: Primary Recrystallization of a Single-Crystal Ni-Base Superalloy - Experiments and Meso-Scale Modeling. GLADD-Meeting, TU Delft, Delft, The Netherlands (2006)
Zambaldi, C.: Modellierung und experimentelle Untersuchung des Rekristallisationsverhaltens der Nickelbasis-Superlegierung CMSX-4. Kolloquium, University of Bayreuth (2005)
Zambaldi, C.; Zaefferer, S.; Wright, S. I.: Determination of texture and microstructure of ordering domains in gamma-TiAl. Electron Backscatter Diffraction Meeting by the Royal Microscopical Society, University of Sheffield, Sheffield, UK (2008)
Zambaldi, C.; Roters, F.; Bieler, T. R.; Raabe, D.: Micro-mechanical modeling of near-gamma Ti-Al-Nb. 11th World Conference on Titanium (JIMIC5) Ti-2007, Kyoto, Japan (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…