Dutta, B.; Hickel, T.; Neugebauer, J.: Coupling of lattice dynamics and magnetism in magnetic shape memory alloys: Consequences for phase diagrams. Asia Sweden meeting on understanding functional materials from lattice dynamics (ASMFLD) conference, Indian Institute of technology Guwahati, Guwahati, India (2014)
Freysoldt, C.; Neugebauer, J.: Point defects in supercells: Correction schemes for the dilute limit. Workshop on Ab-initio description of charged systems and solid/liquid
interfaces
, Santa Barbara, CA, USA (2014)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: Role of the defect creation strategy for modelling dangling bonds in a-Si:H. MRS Spring Meeting, San Francisco, CA, USA (2014)
Hickel, T.; Glensk, A.; Grabowski, B.; Körmann, F.; Neugebauer, J.: Thermodynamics of materials up to the melting point: The role of anharmonicities. Asia Sweden Meeting on Understanding Functional Materials from Lattice dynamics, Guwahati, India (2014)
Körmann, F.; Hickel, T.; Neugebauer, J.: Phase stabilities of metals and steels - The impact of magnetic excitations from fi rst-principles. ADIS (Ab initio Description of Iron and Steel) Conference 2014 , Ringberg Castle, Rottach-Egern, Germany (2014)
Neugebauer, J.: Interplay between Plasticity Mechanisms, Entropy, and Chemical Composition: An Ab initio approach. Plasticity 2014, Freeport, Bahamas (2014)
Neugebauer, J.: Understanding hydrogen embrittlement by a combined atomistic-analytic multiscale approach. MDRC Conference , Lake Arrowhead, CA, USA (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.