Gutiérrez-Urrutia, I.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique for quantitative microstructural characterization of deformed materials. International Symposium on Plastic Deformation and Texture Analysis, Alcoy, Spain (2012)
Gutiérrez-Urrutia, I.; Marceau, R. K. W.; Raabe, D.: Multi-scale investigation of strain-hardening mechanisms in high-Mn steels from the mesoscale to the atomic scale. Lecture at Materials Department, Oxford University, Oxford, UK (2012)
Chen, Z.; Boehlert, C.; Gutiérrez-Urrutia, I.; Llorca, J.; Pérez-Prado, M. T.: In-situ analysis of the tensile deformation mechanisms in rolled AZ31. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: Evaluation of twin boundary interfaces to strain hardening by electron channeling contrast imaging. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.: Electron channeling contrast imaging: A powerful technique for quantitative microstructural characterization of deformed materials in the SEM. Seminar at Bundesanstalt fuer Materialforschung-pruefung (BAM), Berlin, Germany (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: New insights on quantitative microstructure characterization by electron channeling contrast imaging under controlled diffraction conditions in the SEM. Microscopy & Microanalysis, Phoenix, AZ, USA (2012)
Gutierrez-Urrutia, I.; Raabe, D.: Study of deformation twinning and planar slip in a TWIP steel by Electron Channelling Contrast Imaging in a SEM. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Pérez-Prado, M. T.; Boehlert, C.; Llorca, J.; Gutiérrez-Urrutia, I.: In-situ analysis of deformation and recrystallization mechanisms. European Congress on Advanced Materials and Processes, EUROMAT 2011, Montpellier, France (2011)
Gutierrez-Urrutia, I.; Raabe, D.: Dislocation imaging by electron channeling contrast under controlled diffraction conditions in the SEM. Microscopy Conference MC 2011, Kiel, Germany (2011)
Gutierrez-Urrutia, I.; Dick, A.; Hickel, T.; Neugebauer, J.; Raabe, D.: Understanding TWIP steel microstructures by using advanced electron microscopy and ab initio predictions. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Gutierrez-Urrutia, I.; Raabe, D.: The influence of planar slip and deformation twinning on mechanical behavior in TWIP steels. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Raabe, D.; Gutierrez-Urrutia, I.: Effect of strain path and texture on microstructure in Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. 1st International Conference on High Manganese Steels 2011, Seoul, South Korea (2011)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Effect of grain size and heterogeneous strain distribution on deformation twinning in a Fe–22Mn–0.6C TWIP steel. THERMEC 2009, Berlin, Germany (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.