Frommeyer, G.; Brokmeier, K.; Brüx, U.; Deges, J.; Knippscheer, S.: Innovative Werkstoffe für die fortgeschrittene Schmiedetechnologie. Int. Konf. Neuere Entwicklungen in der Massivumformung, Stuttgart, Germany, May 12, 2009 - May 13, 2009. Int. Konf. Neuere Entwicklungen in der Massivumformung, pp. 289 - 318 (2009)
Frommeyer, G.; Brüx, U.; Brokmeier, K.; Rablbauer, R.: Development, Microstructures and Properties of Advanced High-Strength and Supra-Ductile Light-Weight Steels. International Conference on Processing and Manufacturing of Advanced Materials -Thermec 2009, Berlin, Germany (2009)
Frommeyer, G.; Brokmeier, K.; Knippscheer, S.: Innovative Materials for Advanced Forming Technology. International Conference on New Developments in Forging Technology, Stuttgart, Fellbach, Germany (2009)
Frommeyer, G.; Rablbauer, R.; Brokmeier, K.: Das Potential von hochfesten und supraduktilen Fe–Mn–Al–Si–C Stählen für den zukünftigen Karosserieleichtbau - Stand der Technik und Entwicklungstrends. WAMM World Automotive Materials Meeting 2008, Bad Nauheim/Frankfurt, Germany (2008)
Frommeyer, G.; Rablbauer, R.; Brokmeier, K.: Entwicklung und Eigenschaften ultrahochfester und supraduktiler Stähle für den Fahrzeugbau. Clausthal Industriekolloquium Sonderforschungsbereich 675, Clausthal (2007)
Brokmeier, K.: Improving the fomability and strength of light-weight Fe-Mn-Al-Si steels. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Brokmeier, K.; Frommeyer, G.: High carbon lightweight iron-manganese-TRIP/TWIP-steels with improved formability and strength. 17. International Federation for Heat Treatment and Surface Engineering (IFHTSE), Kobe, Japan (2008)
Brokmeier, K.: High carbon light-weight Fe-Mn-TRIP/TWIP-steels with improved formability and strength. 7th European Symposium on Martensitic Transformation and Shape Memory Alloys, Bochum, Germany (2006)
Brokmeier, K.: Higher content of carbon improves the formability and strength of light-weight Fe–Mn–Al–Si TRIP-steels. European Congress on Advanced Materials and Processes, Prague, Czech Republic (2005)
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.