Tehranchi, A.; Zhou, X.; Curtin, W. A.: A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction. Acta Materialia 185, pp. 98 - 109 (2020)
Tehranchi, A.; Curtin, W. A.: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics 216, 106502 (2019)
Leyson, G.; Curtin, W. A.: Solute strengthening at high temperatures. Modelling and Simulation in Materials Science and Engineering 24 (6), 065005 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.