Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Heilmaier, M.; Krüger, M.; Palm, M.; Pyczak, F.; Stein, F. (Eds.): Intermetallics 2021. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2021), 208 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2019. Intermetallics 2019, Educational Center Kloster Banz, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2019)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2017. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Congressmanagement & Marketing GmbH, Jena, Germany (2017), 220 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings: Intermetallics 2015, International Conference. Intermetallics 2015, International Conference, Bad Staffelstein, Germany, September 28, 2015 - October 02, 2015. Congressmanagement & Marketing GmbH, Jena, Germany (2015), 116 pp.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…