Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Heilmaier, M.; Krüger, M.; Palm, M.; Pyczak, F.; Stein, F. (Eds.): Intermetallics 2021. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2021), 208 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2019. Intermetallics 2019, Educational Center Kloster Banz, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2019)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2017. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Congressmanagement & Marketing GmbH, Jena, Germany (2017), 220 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings: Intermetallics 2015, International Conference. Intermetallics 2015, International Conference, Bad Staffelstein, Germany, September 28, 2015 - October 02, 2015. Congressmanagement & Marketing GmbH, Jena, Germany (2015), 116 pp.
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this EU Horizon project, we at MPIE, will focus on the sustainable pre-reduction of manganese ores with hydrogen, especially the kinetic analysis of the reduction process using thermogravimetry analysis and an in-depth understand the role of microstructure and local chemistry in the reduction process.
Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe…
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…