Zhou, X.; Hickel, T.; Gault, B.; Ophus, C.; Liebscher, C.; Dehm, G.; Raabe, D.: Exploring the Relationship Between Grain Boundary Structure and Chemical Composition at the Atomic Level. International Conference on Intergranular and Interphase Boundaries in Materials (IIB 2024), Beijing, China (2024)
Dehm, G.: Atomic resolved imaging of grain boundary phase transitions in pure and alloyed metallic thin films. 17th International Conference on Intergranular and Interphase Boundaries in Materials (IIB 2024), Beijing, China (2024)
Lee, J. S.; Dehm, G.; Best, J. P.; Stein, F.: A Micromechanical Study on the Correlation of Composition and Properties of B2 FeAl across the Interface of an Fe–Al Diffusion Couple. ECR Day, Ruhr Universität Bochum, Bochum, Germany (2024)
Dehm, G.; Devulapalli, V.; Schulz, F.; Soares Barreto, E.; Ellendt, N.; Jägle, E. A.: Strengthening of CoCrFe(Mn)Ni high entropy alloys by dislocation pinning: From Lattice friction & SRO to particle strengthening. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2024, Bernkastel-kues, Germany (2024)
Vacirca, D.; Bignoli, F.; Li Bassi, A.; Best, J. P.; Dehm, G.; Faurie, D.; Djemia, P.; Ghidelli, M.: Boosting mechanical properties of thin film high entropy alloys through nanoengineering design strategies. 16th International Conference on Local Mechanical Properties, Prague, Czech Republic (2024)
Bhat, M. K.; Brink, T.; Ding, H.; Jung, C.; Best, J. P.; Dehm, G.: Influence of the Structure and Chemistry of Σ5 Grain Boundaries on Microscale Strengthening in Cu Bicrystals. TMS Annual Meeting and Exhibition 2024, Orlando, FL, USA (2024)
Kanjilal, A.; Best, J. P.; Dehm, G.: Elevated temperature deformation of intermetallic phases in Mg–Al–Ca alloy at small length scale. International conference on creep and fracture of engineering materials and structures, Creep 2024, Bangalore, India (2024)
Kini, M. K.; Nandy, S.; Best, J. P.; Dehm, G.: Deformation of CoCrFeNi alloy thin films under thermal fatigue. International Conference on Creep and Fracture of Engineering Materials and Structures CREEP 2024, Bangalore, India (2024)
Kanjilal, A.; Best, J. P.; Dehm, G.: Using in-situ nano- and micromechanical testing to probe the fracture behavior of intermetallic Laves phase materials. 7th International Indentation Workshop – IIW7, Hyderabad, India (2023)
Dehm, G.: Resolving the interplay of structure and energy landscapes of tilt grain boundaries in metals. 3rd ELSICS Conference and Bunsen-Colloquium “Energy Landscapes and Structure in Ion Conducting Solids (ELSICS)”, Ulm, Germany (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.