Springer, H.; Belde, M. M.; Raabe, D.: Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability. Materials and Design 90, pp. 1100 - 1109 (2016)
Gutiérrez-Urrutia, I.; Archie, F. M. F.; Raabe, D.; Yan, F.; Tao, N.-R.; Lu, K.: Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel. Science and Technology of Advanced Materials 17 (1), pp. 29 - 36 (2016)
Kovács, A.; Pradeep, K. G.; Herzer, G.; Raabe, D.; Dunin-Borkowski, R. E.: Magnetic microstructure in a stress-annealed Fe73.5Si15.5B7Nb3Cu1 soft magnetic alloy observed using off-axis electron holography and Lorentz microscopy. AIP Advances 6 (5), 056501 (2016)
Li, Y.; Herbig, M.; Goto, S.; Raabe, D.: Formation of nanosized grain structure in martensitic 100Cr6 bearing steels upon rolling contact loading studied by atom probe tomography. Materials Science and Technology 32 (11), pp. 1100 - 1105 (2016)
Timokhina, I. B.; Liss, K.-D.; Raabe, D.; Rakha, K.; Beladi, H.; Xiong, X.; Hodgson, P. D.: Growth of bainitic ferrite and carbon partitioning during the early stages of bainite transformation in a 2 mass silicon steel studied by in situ neutron diffraction, TEM and APT. Journal of Applied Crystallography 49, pp. 399 - 414 (2016)
Pradeep, K. G.; Herzer, G.; Raabe, D.: Atomic scale study of CU clustering and pseudo-homogeneous Fe-Si nanocrystallization in soft magnetic FeSiNbB(CU) alloys. Ultramicroscopy 159 (2), pp. 285 - 291 (2015)
Stoffers, A.; Cojocaru-Mirédin, O.; Seifert, W.; Zaefferer, S.; Riepe, S.; Raabe, D.: Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Progress in Photovoltaics: Research and Applications 23 (12), pp. 1742 - 1753 (2015)
Pradeep, K. G.; Tasan, C. C.; Yao, M.; Deng, Y.; Springer, H.; Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 648, pp. 183 - 192 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.