Rusitzka, A. K.; Stephenson, L.; Gremer, L.; Raabe, D.; Willbold, D.; Gault, B.: Getting insights to Alzheimer‘s disease by atom probe tomography. 6th International caesar conference, Overcoming Barriers — atomic-resolution and beyond: advances in molecular electron microscopy, Bonn, Germany (2017)
Kwiatkowski da Silva, A.; Ponge, D.; Inden, G.; Gault, B.; Raabe, D.: Physical Metallurgy of segregation, austenite reversion, carbide precipitation and related phenomena in medium Mn steels. Gordon Research Conference: Physical Metallurgy, Biddeford, ME, USA (2017)
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2024, Imperial College London, UK, 2024-04 - 2024-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2023, Imperial College London, UK, 2023-04 - 2023-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2022, Imperial College London, UK, 2022-04 - 2022-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2021, Imperial College London, UK, 2021-04 - 2021-07
Lee, C.-G.; Nallathambi, V.; Kang, T.; Aota, L. S.; Reichenberger, S.; El-Zoka, A.; Choi, P.-P.; Gault, B.; Kim, S.-H.: Magnetocaloric effect of Fe47.5Ni37.5Mn15 bulk and nanoparticles: A cost-efficient alloy for room temperature magnetic refrigeration. arXiv (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.