Copyright Max-Planck-Institut für Eisenforschung GmbH

Research Projects

 In this project, we reveal the subtle yet important interplay between the faceting of grain boundaries and their chemical decoration with solutes in an engineering Al-Zn-Mg-Cu alloy. Previously, the interplay of chemistry and faceting was revealed for specific grain boundaries in well-defined bicrystals, which are realistically not encountered in engineering alloys. more
In this project, we successfully developed a crystal-glass high-entropy nanocomposite in CrFeCoNi-based system. The microstructure, composition and deformation mechanism of the novel crystal-glass high-entropy nanocomposite was comprehensively studied using probe-corrected scanning transmission electron microscope and atom probe tomography. This crystal-glass nanocomposite design provides a route to develop advanced structural materials with an outstanding combination of strength and ductility. more
In this project we work on the corelative characterization of the atomic structure and composition of water-splitting catalysts. We aim to better understand reaction and degradation mechanisms of Ir-based catalysts for the oxygen evolution reaction (OER) by establishing structure-function relationships at the atomic scale. more
Thermoelectric materials can be used to generate electricity from a heat source through the Seebeck effect, whereby a temperature difference leads to a difference in voltage for power generation. The opposite effect, known as the Peltier effect, is exploited for heating and cooling for instance. The efficiency of the conversion can be increased by introducing defects that efficiently scatter phonons, i.e. the carriers of lattice vibrations and hence heat, but do not affect much the movement of electrons so as to maintain good electrical conductivity. more
This research focuses on studying the segregation behavior of solute atoms at defects like dislocations and grain boundaries (GBs). We aim at generating a connection between defect-related observations to mechanical properties. The outcome will provide input into the design of advanced alloys.
  more
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination. more

Advanced APT Process Tools

Advanced microscopy and spectroscopy offer unique opportunities to study the structure, composition, and bonding state of individual atoms from within complex, engineering materials. Such information can be collected at a spatial resolution of as small as 0.1 nm with the help of aberration correction. more
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM). more

Energy Materials

This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography. more
Materials used in catalytic reactions are exposed to conditions that inevitably lead to microstructural and chemical changes in the bulk and on the surface. To understand their complex interplay and influence on the catalyst´s performance, one requires spatially resolved methods that encompass surface and bulk sensitivity on the nanoscale, ideally in-operando. more

High Temperature Materials

Understanding the deformation mechanisms observed in high performance materials, such as superalloys, allows us to design strategies for the development of materials exhibiting enhanced performance. In this project, we focus on the combination of structural information gained from electron microscopy and compositional measurements from atom probe tomography (APT). more
In this project we work on the fabrication and the thermodynamic and metallurgical basics associated with the additive manufacturing of dense Mo-Si-B-based alloys. more
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative techniques. more

Bio Materials

In this project we try to expand the possibilities of using atom probe tomography (APT) to investigate proteins, their structures and binding to ligands. The project is funded by Volkswagenstiftung "Experiment" (Seeing atoms in biological materials - a new frontier for atomic-scale tomography) more

Al & Ti based Alloys

The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging. more

Finished projects

In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy. more
In this project, we directly image and characterize solute hydrogen and hydride by use of atom probe tomography combined with electron microscopy, with the aim to investigate H interaction with different phases and lattice defects (such as grain boundaries, dislocation, etc.) in a set of specimens of commercially pure Ti, model and commercial Ti-alloys. more
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells. more
Go to Editor View