Energy Materials

2D MXenes guided by 3D Atomic-Resolution Tomography
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships between surface structure, surface oxidation state, surface composition and sub-surface regions, and performance of 2D materials.
Impurity engineering for electrochemical nano-catalysts
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses. However, upscaling anion-exchange membrane fuel cells (AEMFCs) is hindered by the slow kinetics of hydrogen oxidation reaction (HOR) at the anode.
Li-ion battery electrode materials
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term, sustainable and safe operation requires detailed knowledge of their microstructure and chemistry, and their evolution under operating conditions, on the nanoscale.
Cryo atom probe tomography for energy materials
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better materials.
Exploring individual Nanostructures Chemistry using Atom Probe Tomography
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography. more
Go to Editor View