Ram, F.; Zaefferer, S.: Accurate Kikuchi band localization and its application for diffraction geometry determination. HR-EBSD workshop, Imperial College, London, UK (2014)
Ram, F.; Zaefferer, S.: Plastic strain derivation and Kikuchi band localization by applying the Kikuchi bandlet method to electron backscatter Kikuchi Diffraction patterns. 17th ICOTOM, Dresden; Germany (2014)
Zaefferer, S.: SEM and TEM based orientation microscopy for investigation of recrystallization processes. CNRS summer school on recrystallization, Frejus, France (2014)
Herbig, M.; Raabe, D.; Li, Y. J.; Choi, P.; Zaefferer, S.; Goto, S.: Quantification of Grain Boundary Segregation in Nanocrystalline Material. Seminar at Department Microstructure Physics and Alloy Design, MPI für Eisenforschung, Düsseldorf, Germany (2013)
Zaefferer, S.; Elhami, N. N.: Electron Channelling Contrast Imaging under controlled diffraction conditions, cECCI - Theory and Applications. CEMEF, Sofia-Antipolis, France (2013)
Zaefferer, S.; Kleindiek, S.; Schock, K.; Volbert, B.: Combined Application of EBSD and ECCI Using a Versatile 5-Axes Goniometer in an SEM. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Zaefferer, S.; Elhami, N. N.; Konijnenberg, P. J.; Jäpel, T.: Quantitative Microstructure Characterization by Application of Advanced SEM-Based Electron Diffraction Techniques. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Raabe, D.; Choi, P.; Herbig, M.; Li, Y.; Zaefferer, S.; Kirchheim, R.: Iron – Mythology and High Tech: From Electronic Understanding to Bulk Nanostructuring of 1 Billion Tons. Summer School 2013 on Functional Solids – FERRUM - organized by Leibniz University Hannover, Goslar, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.