Neugebauer, J.: Ab initio thermodynamics: A novel route to design materials on the computer. Colloquium at Universität Marburg, Marburg, Germany (2015)
Neugebauer, J.: Understanding the fundamental mechanisms behind H embrittlement: An ab initio guided multiscale approach. International Workshop MoD-PMI , Marseille, France (2015)
Neugebauer, J.: Materials design based on predictive ab initio thermodynamics. Colloquium at Lawrence Livermore National Lab, Livermore, CA, USA (2015)
Dutta, B.; Körmann, F.; Hickel, T.; Ghosh, S.; Sanyal, B.; Neugebauer, J.: The Itinerant Coherent Potential Approximation for phonons: role of fluctuations for systems with magnetic and chemical disorder. Materials Theory Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA (2015)
Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances