Sandlöbes, S.; Korte-Kerzel, S.; Raabe, D.: On the influence of the heat treatment on microstructure formation and mechanical properties of near-alpha Ti–Fe alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 748, pp. 301 - 312 (2019)
Dutta, A.; Ponge, D.; Sandlöbes, S.; Raabe, D.: Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia 5, 100252 (2019)
Kontis, P.; Kostka, A.; Raabe, D.; Gault, B.: Influence of composition and precipitation evolution on damage at grain boundaries in a crept polycrystalline Ni-based superalloy. Acta Materialia 166, pp. 158 - 167 (2019)
Lu, X.; Zhang, X.; Shi, M.; Roters, F.; Kang, G.; Raabe, D.: Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. International Journal of Plasticity 113, pp. 52 - 73 (2019)
Su, J.; Raabe, D.; Li, Z.: Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Materialia 163, pp. 40 - 54 (2019)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances