Sachs, C.: Microstructure and mechanical properties of the exoskeleton of the lobster Homarus americanus as an example of a biological composite material. Dissertation, RWTH Aachen, Aachen, Germany (2008)
Tjahjanto, D.: Micromechanical Modeling and Simulations of Tranformation-Induced Plasticity in Multiphase Carbon Steels. Dissertation, TU Delft, Delft, The Netherlands (2008)
Klüber, C.: Korrelation von mechanischen Eigenschaften und Kristallorientierung auf mikroskopischer und nanoskopischer Ebene. Dissertation, RWTH Aachen, Aachen, Germany (2008)
Bastos da Silva, A. F.: Characterization of the Microstructure, Grain Boundaries and Texture of Nanostructured Electrodeposited CoNi by use of EBSD. Dissertation, RWTH Aachen, Aachen, Germany (2007)
Goerdeler, M.: Application of a dislocation density based flow stress model in the integrative through-process modeling of Aluminium production. Dissertation, RWTH Aachen, Aachen, Germany (2007)
Wolff, C.: Der tribologisch asymmetrische Flachstauchversuch - Eine neue Methode zur Analyse von Reibungsvorgängen bei Umformprozessen. Dissertation, RWTH Aachen, Aachen, Germany (2001)
Kaushal, C.: Untersuchung der Abhängigkeit des Ölaustrags von der Oberflächenfeinstruktur beim Auswalzen gedoppelter Aluminiumfolien. Diploma, HS Niederrhein, Krefeld, Germany (2003)
Tranchant, J.: Deformation of Semi-Brittle Intermetallic Material under Superimposed Hydrostatic Pressure. Diploma, Ecole Centrale de Nantes, Nantes, France (2002)
Paiva do Nascimento, A. W.: An optimized method to determine initial parameters of advanced yield surfaces for sheet metal form-ing applications. Master, Ruhr-Universität Bochum (2021)
Kusampudi, N.: Using Machine Learning and Data-driven Approaches to Predict Damage Initiation in Dual-Phase Steels. Master, Ruhr-Universität Bochum (2020)
Soundararajan, C. K.: Recrystallization behavior and mechanical properties of interstitially alloyed CoCrFeMnNi equiatomic high entropy alloy. Master, RWTH Aachen University (2020)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.