Oh, D. M.; Wippermann, S. M.; Schmidt, W. G.; Yeom, H. W.: Oxygen adsorbates on the Si(111)4x1-In metallic atomic wire: Scanning tunneling microscopy and density-functional theory calculations. Physical Review B 90 (15), 155432 (2014)
Wippermann, S. M.; Schmidt, W. G.: Entropy Explains Metal-Insulator Transition of the Si(111)-In Nanowire Array. Physical Review Letters 105 (12), 126102 (2010)
Wippermann, S. M.; Schmidt, W. G.: Water adsorption on clean Ni(111) and p(2x2)-Ni(111)-O surfaces calculated from first principles. Physical Review B 78 (23), 235439 (2008)
Wippermann, S. M.; Koch, N.; Schmidt, W. G.: Adatom-induced conductance modification of in nanowires: Potential-well scattering and structural effects. Physical Review Letters 100 (10), 106802 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.