Bitzek, E.: The Origin of Deformation-Induced Topological Anisotropy in Silica Glass. International Conference on the Strength of Materials ICSMA 19, Metz, France (2022)
Meier de Andrade, A.; Bitzek, E.: Fracture in the Presence of Hydrogen - Influence of the Potential. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2024)
Meier de Andrade, A.; Bitzek, E.: Fracture in the Presence of Hydrogen - Influence of the Potential. The XXII Brazilian Materials Research Society (B-MRS) Meeting 2024, Santos, Brazil (2024)
Atila, A.: Influence of Structure and Topology on the Deformation Behavior and Fracture of Oxide Glasses. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2023)
Poul, M.; Huber, L.; Bitzek, E.; Neugebauer, J.: Systematic Structure Datasets for Machine Learning Potentials: Application to Moment Tensor Potentials of Magnesium and its Defects. arXiv (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…