Stein, F.; Vogel, S. C.; Eumann, M.; Palm, M.: Determination of the crystal structure of the ε phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 18 (1), pp. 150 - 156 (2010)
Krein, R.; Palm, M.; Heilmaier, M.: Characterization of microstructures, mechanical properties, and oxidation behavior of coherent A2 + L21 Fe–Al–Ti. Journal of Materials Research 24 (11), pp. 3412 - 3421 (2009)
Palm, M.: Phase equilibria in the Fe corner of the Fe–Al–Nb system between 800 and 1150°C. Journal of Alloys and Compounds 475 (1-2), pp. 173 - 177 (2009)
Palm, M.: Fe–Al materials for structural applications at high temperatures: Current research at MPIE. International Journal of Materials Research 100 (3), pp. 277 - 287 (2009)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics 16 (6), pp. 834 - 846 (2008)
Krein, R.; Palm, M.: The influence of Cr and B additions on the mechanical properties and oxidation behaviour of L21-ordered Fe-Al-Ti-based alloys at high temperatures. Acta Materialia 56 (10), pp. 2400 - 2405 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics 16 (5), pp. 706 - 716 (2008)
Stein, F.; Palm, M.: Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. International Journal of Materials Research 98 (7), pp. 580 - 588 (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…