Horiuchi, T.; Stein, F.; Abe, K.; Taniguchi, S.: Formation of Complex Intermetallic Phases from Supersaturated Co Solid Solution in a Co–3.9Nb Alloy. TMS 2017 Annual Meeting, San Diego, CA, USA (2017)
Stein, F.; Horiuchi, T.: Discontinuous Precipitation of the Complex Intermetallic Phase Nb2Co7 from Supersaturated Co Solid Solution. Thermec 2016, Graz, Austria (2016)
Yamaguchi, M.; Horiuchi, T.; Ikeda, K.-I.; Miura, S.; Stein, F.: Evaluation of Hardness before and after Compression Test of Nb2Co7 Single-phase Alloy by Nanoindentation Test. JIM (Japanese Institute of Metals) Meeting, ePoster, online (2021)
Yamada, K.; Horiuchi, T.; Stein, F.; Miura, S.: Effect of Metastable L12-Co3Nb on Precipitation of Intermetallic Phases from Nb-Supersaturated Co Solid Solution in Co-rich Co-Nb Binary Alloys. 6th Int. Indentation Workshop, IIW6, Sapporo, Japan (2018)
Abe , K.; Horiuchi, T.; Stein, F.; Taniguchi, S.: Interrelation between Crystal Structure of Co Solid Solution Matrix and Precipitation of Intermetallic Phases in Co-rich Co–Nb Alloys. Calphad XLV, Awaji Island, Hyogo, Japan (2016)
Horiuchi, T.; Stein, F.: Precipitation Behavior of Co7Nb2 from Supersaturated Co Solid Solution in Co–Nb Binary System. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.